Long Range Plan Joint QCD Town Meeting Temple University September 13-15, 2014

Parity Violation and Hadron Structure

Recent Results and Future Prospects

Krishna Kumar

Stony Brook University, SUNY

Acknowledgments: K. Paschke, P. Souder, X. Zheng

Weak Neutral Current Interactions

- **+Precision Neutrino Scattering**
- **New Physics/Weak-Electromagnetic Interference**

• Spin-dependent electron scattering

Parity-violating Electron Scattering

$$-A_{LR} = A_{PV} = \frac{\sigma_1 - \sigma_1}{\sigma_1 + \sigma_1} \sim \frac{A_{\text{weak}}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} \quad (g_A^e g_V^T + \beta g_V^e g_A^T)$$

$$g_V \text{ and } g_A \text{ are function of } \sin^2 \theta_W \qquad A_{PV} \sim 10^{-5} \cdot Q^2 \quad \text{to} \quad 10^{-4} \cdot Q^2$$

$$>A_{PV} \sim 10^{-5} \cdot Q^2$$
 to $10^{-4} \cdot Q^2$

Weak Neutral Current Interactions

- ***Precision Neutrino Scattering**
- **♦New Physics/Weak-Electromagnetic Interference**

• Spin-dependent electron scattering

Parity-violating Electron Scattering

$$-A_{LR} = A_{PV} = \frac{\sigma_{\downarrow} - \sigma_{\downarrow}}{\sigma_{\downarrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} \quad (g_A^e g_V^T + \beta g_V^e g_A^T)$$

$$g_V \text{ and } g_A \text{ are function of } \sin^2 \theta_W \qquad A_{PV} \sim 10^{-5} \cdot Q^2 \quad \text{to} \quad 10^{-4} \cdot Q^2$$

Specific choices of kinematics and target nuclei probes different physics:

- In mid 70s, goal was to show $sin^2\theta_W$ was the same as in neutrino scattering
- Since early 90's: target couplings probe novel aspects of hadron structure (strange quark form factors, neutron RMS radius of nuclei)
- Future: precision measurements with carefully chosen kinematics can probe physics at the multi-TeV scale, and novel aspects of nucleon structure

Continuous interplay between probing hadron structure and electroweak physics

Outline

Parity-violating electron scattering has become a precision tool

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

PVeS Experiment Summary

Pioneering electron-quark PV DIS experiment SLAC E122

State-of-the-art:

- sub-part per billion statistical reach and systematic control
- sub-1% normalization control

- Strange Quark Form Factors
- Neutron skin of a heavy nucleus
- Indirect Searches for New TeV Physics
- Novel Probes of Nucleon Structure
- Electroweak Structure Functions at an EIC

2011: Completion of a 2-decade program

Strange Quarks Form Factors

SC Milestone HP4 on Flavor Separated Form Factors at Q² < 1 GeV²

- Sensitive Flavor separation at 3 Q² values
- No more than few % of EM structure
- Recent lattice results in agreement

Pb-Radius EXperiment

EW Probe of Neutron Densities

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2)$$

$$M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2 \theta_W \Big) F_p (Q^2) - F_n (Q^2) \Big]$$

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[(1 - 4\sin^2\theta_W) F_p(Q^2) - F_n(Q^2) \Big]$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \qquad Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \quad Q^p_W \sim 1 - 4\sin^2\theta_W$$

$$\frac{\delta(A_{PV})/A_{PV} \sim 3\%}{\delta(R_n)/R_n \sim 1\%}$$

$$Q_{EM}^p \sim 1 \quad Q_{EM}^n$$

$$\delta(A_{PV})/A_{PV} \sim 3\%$$

$$\delta(R_n)/R_n \sim 1\%$$

Pb-Radius EXperiment

EW Probe of Neutron Densities

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2)$$

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[(1 - 4\sin^2\theta_W) F_p(Q^2) - F_n(Q^2) \Big]$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \qquad Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \quad Q^p_W \sim 1 - 4\sin^2\theta_W$$

$$\frac{\delta(A_{PV})/A_{PV} \sim 3\%}{\delta(R_n)/R_n \sim 1\%}$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)}$$

$$Q_{EM}^p \sim 1 \qquad Q_{EM}^n \sim 0$$

$$Q^n_W \sim -1$$
 $Q^p_W \sim 1 - 4\sin^2\theta_W$

$$\delta(A_{PV})/A_{PV} \sim 3\%$$

$$\delta(R_{\bullet})/R_{\bullet} \sim 1\%$$

Pb-Radius EXperiment

EW Probe of Neutron Densities

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2)$$

$$M^{EM} = \frac{4\pi\alpha}{Q^{2}} F_{p}(Q^{2}) \qquad M_{PV}^{NC} = \frac{G_{F}}{\sqrt{2}} \Big[\Big(1 - 4\sin^{2}\theta_{W} \Big) F_{p}(Q^{2}) - F_{n}(Q^{2}) \Big]$$

$$F_{n}(Q^{2}) \qquad Q^{p}_{EM} \sim 1 \qquad Q^{n}_{EM} \sim 0 \qquad Q^{n}_{W} \sim -1 \qquad Q^{p}_{W} \sim 1 - 4\sin^{2}\theta_{W}$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \frac{Q^p_{EM} \sim 1}{\delta(A_{PV})/A_{PV} \sim 3\%}$$

$$Q^p_{EM} \sim 1 \qquad Q^n_{EM}$$

$$\delta(A_{PV})/A_{PV} \sim 3\%$$

$$\delta(R_n)/R_n \sim 1\%$$

 $\delta(R_n) \sim \pm 0.06 \text{ fm}$

Parity Violation and Hadron Structure

Krishna Kumar, September 13, 2014

Electroweak Interactions at scales much lower than the W/Z mass

TeV-Scale Probe: Indirect Clues

NP: Fundamental Symmetries & HEP: The Intensity/Precision Frontier

High Energy Dynamics

Е

∧ (~TeV)

 $M_{W,Z}$

(100 GeV)

courtesy

V. Cirigliano,

H. Maruyama,

M. Pospelov

SM amplitudes can be very precisely predicted

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

higher dimensional operators can be systematically classified

Dark Sector

Heavy Z's, light (dark) Z's, technicolor, compositeness, extra dimensions, SUSY...

Electroweak Interactions at scales much lower than the W/Z mass

TeV-Scale Probe: Indirect Clues

NP: Fundamental Symmetries & HEP: The Intensity/Precision Frontier

High Energy Dynamics

Е

∧ (~TeV)

 $M_{W,Z}$

(100 GeV)

courtesy

V. Cirigliano,

H. Maruyama,

M. Pospelov

SM amplitudes can be very precisely predicted

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

higher dimensional operators can be systematically classified

Dark Sector

(coupling)-1

Heavy Z's, light (dark) Z's, technicolor, compositeness, extra dimensions, SUSY...

Search for new flavor diagonal neutral currents

Look for tiny but measurable deviations from precisely calculable predictions for SM processes

must reach ∧ ~ 10 TeV

Electroweak Interactions at scales much lower than the W/Z mass

TeV-Scale Probe: Indirect Clues

NP: Fundamental Symmetries & HEP: The Intensity/Precision Frontier

Interplay between electroweak and hadron dynamics

High Energy Dynamics

E

∧ (~TeV)

 $M_{W,Z}$

(100 GeV)

courtesy

V. Cirigliano,

H. Maruyama,

M. Pospelov

SM amplitudes can be very precisely predicted

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

higher dimensional operators can be systematically classified

Dark Sector

(coupling)-1

Heavy Z's, light (dark) Z's, technicolor, compositeness, extra dimensions, SUSY...

Search for new flavor diagonal neutral currents

Look for tiny but measurable deviations from precisely calculable predictions for SM processes

must reach ∧ ~ 10 TeV

For electroweak interactions, 3 input parameters needed:

- Rb-87 mass + Ry constant
- 2. The muon lifetime
- 3. The Z line shape

 α_{QED} G_F M_Z

Muon decay Z production

Weak Neutral Current interactions

4th and 5th best measured parameters: Mw and $\sin^2\theta_W$

For electroweak interactions, 3 input parameters needed:

- Rb-87 mass + Ry constant
- 2. The muon lifetime
- 3. The Z line shape

 α_{QED} G_F M_Z

Muon decay Z production

4th and 5th best measured parameters: Mw and $\sin^2\theta_W$

Weak Neutral Current interactions

LEP-I, SLC, LEP-II, Tevatron World Averages

$$\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}}^{j_2} = 0.23125(16)$$

$$M_W = 80.385(15) \text{ GeV}$$

For electroweak interactions, 3 input parameters needed:

- 1. Rb-87 mass + Ry constant
- 2. The muon lifetime
- 3. The Z line shape

 α_{QED} G_F M_Z

Muon decay Z production

4th and 5th best measured parameters: Mw and $\sin^2\theta_W$

Weak Neutral Current interactions

LEP-I, SLC, LEP-II, Tevatron

$$\sin^2 \theta_W(m_Z)_{\overline{MS}}^2 = 0.23125(16)$$

$$M_W = 80.385(15) \text{ GeV}$$

Flavor Diagonal Contact Interactions

Consider
$$f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$$
 or $f_1f_2 \rightarrow f_1f_2$

Consider
$$f_{1}\bar{f}_{1} \to f_{2}\bar{f}_{2}$$
 or $f_{1}f_{2} \to f_{1}f_{2}$

$$L_{f_{1}f_{2}} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^{2}} \eta_{ij}\bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma^{\mu}f_{2j} \qquad f_{2} \underbrace{A_{new}}^{f_{1}} f_{2}$$

New heavy physics that does not couple directly to SM gauge bosons

For electroweak interactions, 3 input parameters needed:

- 1. Rb-87 mass + Ry constant
- 2. The muon lifetime
- 3. The Z line shape

 α_{QED} G_F M_Z

Muon decay Z production

4th and 5th best measured parameters: M_W and $sin^2\theta_W$

Weak Neutral Current interactions

LEP-I, SLC, LEP-II, Tevatron

 $\sin^2 \theta_W(m_Z)_{\overline{MS}}^2 = 0.23125(16)$

$$M_W = 80.385(15) \text{ GeV}$$

$$\left|\mathbf{A_Z} + \mathbf{A}_{\mathrm{new}}
ight|^{\mathbf{2}}
ightarrow \mathbf{A_Z^2} \left[\mathbf{1} + \left(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A_Z}}
ight)^{\mathbf{2}}
ight]$$

no interference!

Flavor Diagonal Contact Interactions

Consider
$$f_1\bar{f}_1 \to f_2\bar{f}_2$$
 or $f_1f_2 \to f_1f_2$

$$L_{f_1 f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij} \bar{f}_{1i} \gamma_{\mu} f_{1i} \bar{f}_{2j} \gamma^{\mu} f_{2j} \qquad f_{2} \frac{f_2}{A_{new}} f_{2}$$

New flavor diagonal interactions mediated by a new light boson such as the "dark Z"

 $Q^2 \ll M_Z^2$

Weak Neutral Current Couplings

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e} \gamma^{\mu} \gamma_5 e (C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d)$$

$$+ \overline{e} \gamma^{\mu} e (C_{2u} \overline{u} \gamma_{\mu} \gamma_5 u + C_{2d} \overline{d} \gamma_{\mu} \gamma_5 d)]$$

$$+ C_{ee} (e \gamma^{\mu} \gamma_5 e \overline{e} \gamma_{\mu} e)$$

Weak Neutral Current Couplings

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e}\gamma^{\mu}\gamma_5 e(C_{1u}\overline{u}\gamma_{\mu}u + C_{1d}\overline{d}\gamma_{\mu}d) + \overline{e}\gamma^{\mu}e(C_{2u}\overline{u}\gamma_{\mu}\gamma_5u + C_{2d}\overline{d}\gamma_{\mu}\gamma_5d)] + C_{ee}(e\gamma^{\mu}\gamma_5 e\overline{e}\gamma_{\mu}e)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$$

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} rac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} ar{f}_{1i} \gamma_{\mu} f_{1i} ar{f}_{2j} \gamma_{\mu} f_{2j}$$

Weak Neutral Current Couplings

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e} \gamma^{\mu} \gamma_5 e (C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d)$$

$$+ \overline{e} \gamma^{\mu} e (C_{2u} \overline{u} \gamma_{\mu} \gamma_5 u + C_{2d} \overline{d} \gamma_{\mu} \gamma_5 d)]$$

$$+ C_{ee} (e \gamma^{\mu} \gamma_5 e \overline{e} \gamma_{\mu} e)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$$

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_{\mu} f_{1i} \bar{f}_{2j} \gamma_{\mu} f_{2j}$$

$$C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \Longrightarrow$$

PV elastic e-p scattering, Atomic parity violation

Weak Neutral Current Couplings

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e}\gamma^{\mu}\gamma_5 e(C_{1u}\overline{u}\gamma_{\mu}u + C_{1d}\overline{d}\gamma_{\mu}d)$$

$$+ \overline{e}\gamma^{\mu}e(C_{2u}\overline{u}\gamma_{\mu}\gamma_5u + C_{2d}\overline{d}\gamma_{\mu}\gamma_5d)]$$

$$+ C_{ee}(e\gamma^{\mu}\gamma_5 e\overline{e}\gamma_{\mu}e)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$$

$$+ \int_{f_2}^{\text{new physics}} f_1$$

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{i\,j}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_{\mu} f_{1i} \bar{f}_{2j} \gamma_{\mu} f_{2j}$$

$$C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \longrightarrow$$

$$C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$

PV elastic e-p scattering, Atomic parity violation

PV deep inelastic scattering

Weak Neutral Current Couplings

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e} \gamma^{\mu} \gamma_5 e (C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d)$$

$$+ \overline{e} \gamma^{\mu} e (C_{2u} \overline{u} \gamma_{\mu} \gamma_5 u + C_{2d} \overline{d} \gamma_{\mu} \gamma_5 d)]$$

$$+ C_{ee} (e \gamma^{\mu} \gamma_5 e \overline{e} \gamma_{\mu} e)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$$

hew physics
$$f_1$$
 f_2 f_2

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} rac{(g_{i\,j}^{12})^2}{\Lambda_{ij}^2} ar{f}_{1i} \gamma_{\mu} f_{1i} ar{f}_{2j} \gamma_{\mu} f_{2j}$$

$$C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \Longrightarrow$$

PV elastic e-p scattering, Atomic parity violation

$$C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$

PV deep inelastic scattering

$$C_{ee} \propto (g_{RR}^{ee})^2 - (g_{LL}^{ee})^2$$

PV Møller scattering

The Weak Charge of the Proton

The Weak Charge of the Proton

Run O Results (1/25th of total dataset) – published in PRL 111, 141803 (2013)

$$A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$$
 at $\langle Q^2 \rangle = 0.0250 (\text{GeV}/c)^2$

$$Q_W^p(\text{PVES}) = 0.064 \pm 0.012$$
 $Q_W^p(\text{SM}) = 0.0710 \pm 0.0007$

First determination of proton's weak charge in good agreement with Standard Model

The Weak Charge of the Proton

Run O Results (1/25th of total dataset) – published in PRL 111, 141803 (2013)

$$A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$$
 at $\langle Q^2 \rangle = 0.0250 (\text{GeV}/c)^2$

$$Q_W^p(\text{PVES}) = 0.064 \pm 0.012$$
 $Q_W^p(\text{SM}) = 0.0710 \pm 0.0007$

First determination of proton's weak charge in good agreement with Standard Model

The Weak Charge of the Proton

$$A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$$
 at $\langle Q^2 \rangle = 0.0250 (\text{GeV}/c)^2$

$$Q_W^p(\text{PVES}) = 0.064 \pm 0.012$$
 $Q_W^p(\text{SM}) = 0.0710 \pm 0.0007$

First determination of proton's weak charge in good agreement with Standard Model

The Weak Charge of the Proton

Final result with the full accumulated statistics is anticipated in 2015

For a ¹H target, nucleon structure contribution well-constrained from measurements

Run O Results (1/25th of total dataset) – published in PRL 111, 141803 (2013)

$$A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$$
 at $\langle Q^2 \rangle = 0.0250 (\text{GeV}/c)^2$

$$Q_W^p(\text{PVES}) = 0.064 \pm 0.012$$
 $Q_W^p(\text{SM}) = 0.0710 \pm 0.0007$

First determination of proton's weak charge in good agreement with Standard Model

e (p,s)

An ultra-precise measurement of the weak mixing angle using Møller scattering

11 GeV Møller scattering

Measurement Of Lepton Lepton Electroweak Reaction

An ultra-precise measurement of the weak mixing angle using Møller scattering

11 GeV Møller scattering

Measurement Of Lepton Lepton Electroweak Reaction

An ultra-precise measurement of the weak mixing angle using Møller scattering

11 GeV Møller scattering

MOLLER at JLab

Measurement Of Lepton Lepton Electroweak Reaction

 $\delta(\sin^2\theta_W) = \pm 0.00026 \text{ (stat.)} \pm 0.00012 \text{ (syst.)} \quad \longrightarrow \sim 0.1\%$

Matches best collider (Z-pole) measurements!

best contact interaction reach for leptons at low OR high energy

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

- ~ 20M\$ MIE funding required
- Science review by DOE NP: September 10 at UMass, Amherst

toroid

hybrid toroid

 $\mathcal{L}_{\mathrm{e}_{1}\mathrm{e}_{2}} = \sum_{\mathbf{i}: \mathbf{i}=\mathbf{I}, \mathbf{D}} rac{\mathbf{g}_{\mathbf{i}\mathbf{j}}^{2}}{2\mathbf{\Lambda}^{2}} ar{\mathbf{e}}_{\mathbf{i}} \gamma_{\mu} \mathbf{e}_{\mathbf{i}} ar{\mathbf{e}}_{\mathbf{j}} \gamma^{\mu} \mathbf{e}_{\mathbf{j}}$

 $A_{PV} = 35.6 ppb$

Luminosity: 3x10³⁹ cm²/s

75 µA 80% polarized

 $\delta(A_{PV}) = 0.73$ parts per billion

 $\delta(Q^{e_W}) = \pm 2.1 \% \text{ (stat.)} \pm 1.0 \% \text{ (syst.)}$

upstream liquid hydrogen target

= 7.5 TeV $\sqrt{|\mathbf{g}^{\mathbf{2}}_{\mathbf{R}\mathbf{R}} - \mathbf{g}^{\mathbf{2}}_{\mathbf{LL}}|}$

A_{PV} in deep inelastic e-D scattering:

$$Q^2 >> 1 \text{ GeV}^2$$
, $W^2 >> 4 \text{ GeV}^2$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y) b(x) \right] \qquad b(x): function of C_{2i}'s$$

For ²H, assuming charge symmetry,

structure functions cancel in the ratio:

$$a(x)$$
: function of C_{1i} 's

$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

A_{PV} in deep inelastic e-D scattering:

$$Q^2 >> 1 \; GeV^2 \; , W^2 >> 4 \; GeV^2$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y) b(x) \right]$$

$$b(x): function of G_{2i}'s$$

For ²H, assuming charge symmetry,

structure functions cancel in the ratio:

$$a(x)$$
: function of C_{1i} 's

$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

Wang et al., Nature 506, no. 7486, 67 (2014);

6 GeV run results

Q² ~ 1.1 GeV²

A ^{phys} (ppm)	-91.10
(stat.)	± 3.11
(syst.)	± 2.97
(total)	± 4.30

$Q^2 \sim 1.9$	9 GeV ² Asymmetry
A ^{phys} (ppm)	-160.80
(stat.)	± 6.39
(syst.)	± 3.12
(total)	± 7.12

A_{PV} in deep inelastic e-D scattering:

$$Q^2 >> 1 \ GeV^2$$
, $W^2 >> 4 \ GeV^2$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) \right]$$

For ²H, assuming charge symm structure functions cancel in the

Wang et al., Nature 506, no. 7486, 67 (2014);

6 GeV run results

Q² ~ 1.1 GeV²

A ^{phys} (ppm)	-91.10
(stat.)	± 3.11
(syst.)	± 2.97
(total)	± 4.30

$Q^2 \sim 1.9$	9 GeV ² Asymmetry
A^{phys} (ppm)	-160.80
(stat.)	± 6.39
(syst.)	± 3.12
(total)	± 7.12

a(x): function of C_{1i} 's

2C11-C14

A_{PV} in deep inelastic e-D scattering:

$$Q^2 >> 1 \ GeV^2$$
, $W^2 >> 4 \ GeV^2$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y) b(x) \right]$$

For ²H, assuming charge symmetry,

structure functions cancel in the ratio:

$$a(x)$$
: function of C_{1i} 's

b(x): function of C_{2i} 's

$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdot$$

Wang et al., Nature 506, no. 7486, 67 (2014);

6 GeV run results

Q2 ~ 1.1 GeV2

A ^{phys} (ppm)	-91.10
(stat.)	± 3.11
(syst.)	± 2.97
(total)	± 4.30

$Q^2 \sim 1.9$	9 GeV ² Asymmetry
A ^{phys} (ppm)	-160.80
(stat.)	± 6.39
(syst.)	± 3.12
(total)	± 7.12

A_{PV} in deep inelastic e-D scattering:

$$Q^2 >> 1 \ GeV^2 , W^2 >> 4$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + \right]$$

For ²H, assuming charge symmetry,

$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} [a(x) + \frac{\text{Quarks are not}}{\text{ambidextrous}}]$

W. Marciano article in Nature

Wang et al., Nature 506, no. 7486, 67 (2014);

e ratio By separately scattering right - and left-handed electrons off quarks in a deuterium target, researchers have improved, by about a factor of five, on a classic result of mirror-symmetry breaking from 35 years ago. SEE LETTER P.67

first experimental determination that an axial quark coupling combination is non-zero (as predicted)

SOLID with the 12 GeV Upgrade

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- x-range 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- Q² range a factor of 2 for each x
 - (Except at very high x)
- Moderate running times

Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

SOLID with the 12 GeV Upgrade

Requirements

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- *x-range 0.25-0.75*
- $W^2 > 4 \text{ GeV}^2$
- Q^2 range a factor of 2 for each x
 - (Except at very high x)
- Moderate running times

Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

SOLID New Physics Sensitivity

Qweak and SOLID will expand sensitivity that will match high luminosity LHC reach with complementary chiral and flavor combinations

SOLID can improve sensitivity:

100-200 GeV range

QCD Dynamics in Precision D2 PVDIS

$$u^{p}(x) \stackrel{?}{=} d^{n}(x) \quad \Rightarrow \quad \delta u(x) \equiv u^{p}(x) - d^{n}(x)$$
$$d^{p}(x) \stackrel{?}{=} u^{n}(x) \quad \Rightarrow \quad \delta d(x) \equiv d^{p}(x) - u^{n}(x)$$

We already know CSV exists:

- u-d mass difference $\delta m = m_d m_u \approx 4 \text{ MeV}$ $\delta M = M_n - M_p \approx 1.3 \text{ MeV}$
- electromagnetic effects
- Direct sensitivity to parton-level CSV
- Important implications for PDF's
- Could be partial explanation of the NuTeV anomaly

$$R_{CSV} = \frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

QCD Dynamics in Precision D2 PVDIS

$$u^{p}(x) \stackrel{?}{=} d^{n}(x) \quad \Rightarrow \quad \delta u(x) \equiv u^{p}(x) - d^{n}(x)$$
$$d^{p}(x) \stackrel{?}{=} u^{n}(x) \quad \Rightarrow \quad \delta d(x) \equiv d^{p}(x) - u^{n}(x)$$

We already know CSV exists:

- u-d mass difference $\delta m = m_d m_u \approx 4 \text{ MeV}$ $\delta M = M_n - M_p \approx 1.3 \text{ MeV}$
- electromagnetic effects
- Direct sensitivity to parton-level CSV
- Important implications for PDF's
- Could be partial explanation of the NuTeV anomaly

$$R_{CSV} = \frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

$$\langle VV \rangle - \langle SS \rangle = \overline{\langle (V - S)(V + S) \rangle} \propto l_{\mu\nu} \int \langle D | u(x) \gamma^{\mu} u(x) d(0) \gamma^{\nu} d(0) \rangle e^{iq \times x} d^{4}x$$

Zero in quark-parton model

Higher-Twist valence quark-quark correlation

(c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting!

o_L contributions cancel

Longstanding issue in proton structure

Proton PVDIS: d/u at high x

(high power liquid hydrogen target)

SU(6): $d/u\sim 1/2$

Broken SU(6):

 $d/u\sim 0$

 $d/u \sim 1/5$ Perturbative QCD:

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

- Three JLab 12 GeV experiments:
 - CLAS12 BoNuS spectator tagging
 - BigBite DIS $^{3}\mathrm{H}/^{3}\mathrm{He}$ Ratio
 - SoLID PVDIS ep
- The SoLID extraction of d/u is made directly from *ep* DIS: no nuclear corrections

⁴⁸Ca PVDIS

Consider PVDIS on a heavy nucleus

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (ρ exchange)
- shifts quark distributions: "apparent" charge symmetry violation
- Isovector EMC effect: explain additional 2/3 of NuTeV anomaly
- new insight into medium modification of quark distributions

$$a_2\simeq rac{9}{5}-4\sin^2 heta_W-rac{12}{25}rac{u_A^+-d_A^+}{u_A^++d_A^+}+\dots$$
 Great leverage for a clean isospin decomposition

⁴⁸Ca PVDIS

Consider PVDIS on a heavy nucleus

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (ρ exchange)
- shifts quark distributions: "apparent" charge symmetry violation
- Isovector EMC effect: explain additional 2/3 of NuTeV anomaly
- new insight into medium modification of quark distributions

$$a_2\simeq rac{9}{5}-4\sin^2 heta_W-rac{12}{25}rac{u_A^+-d_A^+}{u_A^++d_A^+}+\dots$$
 Great leverage for a clean isospin decomposition

• Flavor separation: clean data sparse to date

 With hadrons in the initial or final state, small effects are difficult to disentangle (theoretically and experimentally)

• Precise isotope cross-section ratios in purely electromagnetic electron scattering: MUCH en reduced sensitivity to the isovector combination; potentially see small effects to discriminate models

• a flavor decomposition of medium modifications is extremely challenging

EW Structure Functions at EIC

$$e^- \longrightarrow p, D, {}^3He$$

$$\frac{1}{2m_N}W^i_{\mu\nu} = -\frac{g_{\mu\nu}}{m_N}F^i_1 + \frac{p_\mu p_\nu}{m_N(p\cdot q)}F^i_2 \text{ Anselmino, Efremov \& Leader, Phys. Rep. 261 (1995)} \\ + i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)}\left[\frac{p^\alpha q^\beta}{m_N}F^i_3 + 2q^\alpha S^\beta g^i_1 - 4xp^\alpha S^\beta g^i_2\right] \\ - \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ A_{TPV} = \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_A\frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V\frac{f(y)}{2}\frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ A_{TPV} = \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g_1^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g_1^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g_1^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g_1^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_4 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_4 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_4 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 + \frac{g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\mu p_\nu}{2($$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

EW Structure Functions at EIC

$$e^- \longrightarrow p, D, {}^3He$$

$$\frac{1}{2m_{N}}W_{\mu\nu}^{i} = -\frac{g_{\mu\nu}}{m_{N}}F_{1}^{i} + \frac{p_{\mu}p_{\nu}}{m_{N}(p\cdot q)}F_{2}^{i} \text{ Anselmino, Efremov \& Leader,}$$

$$+ i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)}\left[\frac{p^{\alpha}q^{\beta}}{m_{N}}F_{3}^{i} + 2q^{\alpha}S^{\beta}g_{1}^{i} - 4xp^{\alpha}S^{\beta}g_{2}^{i}\right]$$

$$- \frac{p_{\mu}S_{\nu} + S_{\mu}p_{\nu}}{2(p\cdot q)}g_{3}^{i} + \frac{S\cdot q}{(p\cdot q)}p_{\mu}p_{\nu}g_{4}^{i} + \frac{S\cdot q}{2(p\cdot q)}g_{\mu\nu}g_{5}^{i}$$

$$- \frac{g_{\mu}S_{\nu} + S_{\mu}p_{\nu}}{2(p\cdot q)}g_{3}^{i} + \frac{S\cdot q}{(p\cdot q)}p_{\mu}p_{\nu}g_{4}^{i} + \frac{S\cdot q}{2(p\cdot q)}g_{\mu\nu}g_{5}^{i}$$

$$- \frac{g_{\mu}S_{\nu} + S_{\mu}p_{\nu}}{2(p\cdot q)}g_{3}^{i} + \frac{S\cdot q}{(p\cdot q)}p_{\mu}p_{\nu}g_{4}^{i} + \frac{S\cdot q}{2(p\cdot q)}g_{\mu\nu}g_{5}^{i}$$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$-\frac{p_{\mu}S_{\nu} + S_{\mu}p_{\nu}}{2(p \cdot q)}g_{3}^{i} + \frac{S \cdot q}{(p \cdot q)^{2}}p_{\mu}p_{\nu}g_{4}^{i} + \frac{S \cdot q}{p \cdot q}g_{\mu\nu}g_{5}^{i}A_{TPV} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\left[g_{V}\frac{g_{5}^{\gamma Z}}{F_{1}^{\gamma}} + g_{A}f(y)\frac{g_{1}^{\gamma Z}}{F_{1}^{\gamma}}\right]$$

proton

$$F_1^{\gamma Z} \propto u + d + s$$
 $F_3^{\gamma Z} \propto 2u_v + d_v$
 $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$
 $g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$

deuteron

$$F_1^{\gamma Z} \propto u + d + s$$
 $F_1^{\gamma Z} \propto u + d + 2s$ $F_3^{\gamma Z} \propto 2u_v + d_v$ $F_3^{\gamma Z} \propto u_v + d_v$ $F_3^{\gamma Z} \propto u_v + d_v$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_2^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$ $g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$

EW Structure Functions at EIC

$$e^- \longrightarrow p, D, {}^3He$$

$$\frac{1}{2m_N}W^i_{\mu\nu} = -\frac{g_{\mu\nu}}{m_N}F^i_1 + \frac{p_\mu p_\nu}{m_N(p\cdot q)}F^i_2 \text{ Anselmino, Efremov \& Leader, Phys. Rep. 261 (1995)} \\ + i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)}\left[\frac{p^\alpha q^\beta}{m_N}F^i_3 + 2q^\alpha S^\beta g^i_1 - 4xp^\alpha S^\beta g^i_2\right] \\ - \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_A\frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V\frac{f(y)}{2}\frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g^{\gamma Z}}{F_1^{\gamma}} + g_Af(y)\frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu S_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 + \frac{g_\mu S_\nu}{p_\nu}g^i_5 \\ - \frac{g_\mu S_\nu}{p_\nu}g^i_5 +$$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

proton

similar expressions for the neutron: $u \leftrightarrow d$

$$g_1^{W^-} = (\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c)$$

$$g_1^{W^+} = (\Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c})$$

$$g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$$

$$g_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$$

proton

$$F_1^{\gamma Z} \propto u + d + s$$
 $F_3^{\gamma Z} \propto 2u_v + d_v$
 $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$
 $g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$

deuteron

$$F_1^{\gamma Z} \propto u + d + 2s$$

$$F_3^{\gamma Z} \propto u_v + d_v$$

$$g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$$

$$g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$$

EW Structure Functions at EIC

$$e^- \longrightarrow p, D, {}^3He$$

$$\frac{1}{2m_N}W^i_{\mu\nu} = -\frac{g_{\mu\nu}}{m_N}F^i_1 + \frac{p_\mu p_\nu}{m_N(p\cdot q)}F^i_2 \text{ Anselmino, Efremov \& Leader, Phys. Rep. 261 (1995)} \\ + i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)}\left[\frac{p^\alpha q^\beta}{m_N}F^i_3 + 2q^\alpha S^\beta g^i_1 - 4xp^\alpha S^\beta g^i_2\right] \\ - \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_A\frac{F^{\gamma Z}_1}{F^{\gamma}_1} + g_V\frac{f(y)}{2}\frac{F^{\gamma Z}_3}{F^{\gamma}_1}\right] \\ - \frac{g_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{S\cdot q}{p\cdot q}g_\mu \nu g^i_5 \\ - \frac{G_FQ^2}{2\sqrt{2}\pi\alpha}\left[g_V\frac{g^{\gamma Z}_1}{F^{\gamma Z}_1} + g_Af(y)\frac{g^{\gamma Z}_1}{F^{\gamma Z}_1}\right] \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 + \frac{g_\mu p_\nu}{p\cdot q}g^i_5 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_3 + \frac{g_\mu p_\nu}{(p\cdot q)^2}p_\mu p_\nu g^i_4 \\ - \frac{g_\mu S_\nu + g_\mu p_\nu}{2(p\cdot q)}g^i_5 \\ - \frac{g_\mu S_\mu p_\nu}{2(p\cdot$$

$$\dot{A}_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$\delta A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

proton

similar expressions for the neutron: $u \leftrightarrow d$

$$g_1^{W^-} = (\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c)$$

$$g_1^{W^+} = (\Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c})$$

$$g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$$

$$g_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$$

$$\int_0^1 dx [g_5^{W^-,n} - g_5^{W^-,p}] = g_A \left(1 - \frac{2\alpha_s}{3\pi}\right)$$

proton

$$F_1^{\gamma Z} \propto u + d + s$$
 $F_3^{\gamma Z} \propto 2u_v + d_v$
 $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$
 $g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$

deuteron

$$F_1^{\gamma Z} \propto u + d + 2s$$

$$F_3^{\gamma Z} \propto u_v + d_v$$

$$g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$$

$$g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$$

new sum rules

EW Structure Functions at EIC

$$e^- \longrightarrow p, D, {}^3He$$

$$\frac{1}{2m_N}W^i_{\mu\nu} = -\frac{g_{\mu\nu}}{m_N}F^i_1 + \frac{p_\mu p_\nu}{m_N(p\cdot q)}F^i_2 \begin{array}{l} \text{Ji, Vogelsang, Blümlein, ...} \\ \text{Phys. Rep. 261 (1995)} \end{array} \\ + i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)} \left[\frac{p^\alpha q^\beta}{m_N}F^i_3 + 2q^\alpha S^\beta \ g^i_1 - 4xp^\alpha S^\beta \ g^i_2\right] \\ - \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)} \ g^i_3 + \frac{S\cdot q}{(p\cdot q)^2} \ p_\mu p_\nu \ g^i_4 + \frac{S\cdot q}{p\cdot q} \ g_{\mu\nu} \ g^i_5 \\ A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g_V S_\nu + S_\mu p_\nu}{2(p\cdot q)} \ g^i_3 + \frac{S\cdot q}{(p\cdot q)^2} \ p_\mu p_\nu \ g^i_4 + \frac{S\cdot q}{p\cdot q} \ g_{\mu\nu} \ g^i_5 \\ A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}{F_1^{\gamma}}\right] \\ - \frac{g^{\gamma Z}}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g^{\gamma Z}}$$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

proton

similar expressions for the neutron: $u \leftrightarrow d$

$$g_1^{W^-} = (\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c)$$

$$g_1^{W^+} = (\Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c})$$

$$g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$$

$$g_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$$

$$\int_0^1 dx [g_5^{W^-,n} - g_5^{W^-,p}] = g_A \left(1 - \frac{2\alpha_s}{3\pi}\right)$$

proton

$$F_1^{\gamma Z} \propto u + d + s$$
 $F_3^{\gamma Z} \propto 2u_v + d_v$
 $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$
 $g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$

deuteron

$$F_1^{\gamma Z} \propto u + d + 2s$$

$$F_3^{\gamma Z} \propto u_v + d_v$$

$$g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$$

$$g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$$

Similar expressions for neutral current structure functions

new sum rules

Examples of Projected Results

 $20 \times 250 \text{ GeV}, Q^2 > 1 \text{ GeV}^2, 0.1 < y < 0.9, 10 \text{ fb}^{-1}$

(Could begin the program with 5x250 GeV i.e "Stage 1" of the EIC)

Examples of Projected Results

 $20 \times 250 \text{ GeV}, Q^2 > 1 \text{ GeV}^2, 0.1 < y < 0.9, 10 \text{ fb}^{-1}$

(Could begin the program with 5x250 GeV i.e "Stage 1" of the EIC)

Full analysis of charged current events including radiative corrections

Aschenauer et al, PRD 88, 114025 (2013)

Examples of Projected Results

Parity Violating Electron Scattering and Hadron Structure

Summary

- **♦ Strange Quark Vector Form Factors**
 - * Program complete: strange quarks contribute no more than a few % of EM Form Factors
 - * Further accuracy in lattice calculations will validate this important insight into nucleon structure
 - * Critical input to precision SM and neutron radius measurements
- **♦ PV Measurements of Neutron Densities**
 - * Proof of principle established: precision from new measurements anticipated in next few years
 - ★ Constraint on the density dependence of the Symmetry Energy
- **♦** Search for New TeV-Scale Physics
 - ★ PV Elastic Scattering: Qweak final results soon, future: MOLLER at JLab & P2 at Mainz
 - ★ PV Deep Inelastic Scattering with Deuterium
 - first experimental establishment of non-zero axial quark couplings
 - 12 GeV with SOLID: TeV-scale sensitivity complementary to LHC at 14 TeV
- **♦ Nucleon Structure Topics Enabled by SOLID**
 - * 2H: Access to a dynamically interesting higher-twist effect
 - * ²H: Precise constraint of possible parton-level charge symmetry violation at high-x
 - ★ ¹H: Precision high-x constraints on d/u with no nuclear corrections
 - * 48Ca: Clean, precise inclusive measurement would facilitate flavor decomposition of EMC dynamics
- **♦** New PV Measurements Enabled by the EIC
 - ★ Natural evolution of the JLab PVDIS Program
 - * Novel parity-violating structure functions will provide new insights into nucleon QCD dynamics

20

Strange Quarks in the Nucleon

Quark Model (2) QCD

Strange quarks carry nucleon momentum: Other external properties affected?

A pressing question after discovery of EMC effect and the spin crisis

proton flavor distribution

Even with broken $SU(3)_f$, potentially large effects for vector current predicted

Theorists originally proposed using neutrino scattering; parity-violating electron scattering technology & the success of the electroweak theory led to a new strategy

Kaplan & Manohar (1988) McKeown (1989) Beck (1990)

$$G_p^Z \sim (1 - 4 \sin^2 \theta_W) G_p^{\gamma} - G_n^{\gamma} - G_s$$

⁴He target: Unique G_E sensitivity

²*H*: Enhanced G_A sensitivity

EW Probe of Neutron Densities

$$M^{EM} = \frac{4\pi\alpha}{Q^{2}} F_{p}(Q^{2}) \qquad M_{PV}^{NC} = \frac{G_{F}}{\sqrt{2}} \Big[\Big(1 - 4\sin^{2}\theta_{W} \Big) F_{p}(Q^{2}) - F_{n}(Q^{2}) \Big]$$

$$Q^{p}_{EM} \sim 1 \qquad Q^{n}_{EM} \sim 0 \qquad Q^{n}_{W} \sim -1 \qquad Q^{p}_{W} \sim 1 - 4\sin^{2}\theta_{W}$$

	proton	neutron	Column Co
Electric charge	1	0	-
Weak charge	~0.08	-1	AND DESCRIPTION OF LAND

EW Probe of Neutron Densities

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M^{NC}_{PV} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2\theta_W \Big) F_p(Q^2 \Big) - F_n(Q^2 \Big) \Big]$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \qquad Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \quad Q^p_W \sim 1 - 4\sin^2\theta_W$$

	proton	neutron	-
Electric charge	1	0	the same of the last of the last of
Weak charge	~0.08	-1	The second second second

EW Probe of Neutron Densities

$$M^{EM} = \frac{1}{2}$$

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2\theta_W \Big) F_p(Q^2) - F_n(Q^2) \Big]$$

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)}$$

$$Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \qquad Q^p_W \sim 1 - 4\sin^2\theta_W$$

$$A_{PV} \sim 0.6 \text{ ppm}$$
proton neutron

 $Q^2 \sim 0.01 \text{ GeV}^2$ 5° scattering angle

Rate ~ 1 GHz $\delta(A_{PV}) \sim 20 \text{ ppb!}$

	proton	neutron	Contract of the last of
Electric charge	1	0	-
Weak charge	~0.08	-1	Charles of the Contract of the

EW Probe of Neutron Densities

 $M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2\theta_W \Big) F_p(Q^2 \Big) - F_n(Q^2 \Big) \Big]$ $\approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \qquad Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \quad Q^p_W \sim 1 - 4\sin^2\theta_W$

 $Q^2 \sim 0.01 \text{ GeV}^2$

5° scattering angle

 $A_{PV} \sim 0.6 \text{ ppm}$ Rate ~ 1 GHz $\delta(A_{PV}) \sim 20 \text{ ppb!}$

	proton	neutron	Contract Contract Contract Con
Electric charge	1	0	THE RESIDENCE AND ADDRESS OF THE PERSONS
Weak charge	~0.08	-1	AND ADDRESS OF A LANSE

Krishna Kumar, September 13, 2014

Parity Violation and Hadron Structure

EW Probe of Neutron Densities

 $Q^2 \sim 0.01 \text{ GeV}^2$

5° scattering angle

 $M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2) \qquad M_{PV}^{NC} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2\theta_W \Big) F_p(Q^2 \Big) - F_n(Q^2 \Big) \Big]$ $\approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} \qquad Q^p_{EM} \sim 1 \qquad Q^n_{EM} \sim 0 \qquad Q^n_W \sim -1 \quad Q^p_W \sim 1 - 4\sin^2\theta_W$

 $A_{PV} \sim 0.6 \text{ ppm}$

Rate ~ 1 GHz

 $\delta(A_{PV}) \sim 20 \text{ ppb!}$

	proton	neutron	-
Electric charge	1	0	-
Weak charge	~0.08	-1	-

Horowitz and Piekarewicz, PRL 86 (2001)

Parity Violation and Hadron Structure

Krishna Kumar, September 13, 2014

Fundamental Symmetries & Neutrinos (also HEP Intensity Frontier)

Compelling arguments for "New Dynamics" in the Early Universe

A comprehensive search to understand the origin of matter requires:

The Large Hadron Collider, astrophysical observations as well as Lower Energy: Q² << M_Z²

Nuclear/Atomic systems address several topics; unique & complementary

- Neutrino mass and mixing $0\nu\beta\beta$ decay, θ_{13} , β decay, long baseline neutrino expts...
- Rare or Forbidden Processes EDMs, charged LFV, 0νββ decay...
- Dark Matter Searches direct detection, dark photon searches...
- Precision Electroweak Measurements: (g-2)μ, charged & neutral current amplitudes

Fundamental Symmetries & Neutrinos (also HEP Intensity Frontier)

Compelling arguments for "New Dynamics" in the Early Universe

A comprehensive search to understand the origin of matter requires:

The Large Hadron Collider, astrophysical observations as well as Lower Energy: Q² << M_Z²

Nuclear/Atomic systems address several topics; unique & complementary

- Neutrino mass and mixing $0\nu\beta\beta$ decay, θ_{13} , β decay, long baseline neutrino expts...
- Rare or Forbidden Processes EDMs, charged LFV, 0νββ decay...
- Dark Matter Searches direct detection, dark photon searches...
- Precision Electroweak Measurements: (g-2)μ, charged & neutral current amplitudes

Experimental Facilities/Initiatives/Programs

- Neutrons: Lifetime, Asymmetries (LANSCE, NIST, SNS...)
- Underground Detectors: Dark Matter, Double-Beta Decay
- Nuclei: Precision Weak Decays, Atomic Parity Violation, EDMs (MSU, ANL, TAMU, Tabletop...)
- Muons, Kaons, Pions: Lifetime, Branching ratios, Michel parameters, g-2, EDMs (BNL, PSI, TRIUMF, FNAL, J-PARC...)
- Electron Beams: Weak neutral current couplings, precision weak mixing angle, dark photons (JLab, Mainz)

The Role of Low Q² Weak Neutral Current Measurements

SOLID Sensitivity

Does Supersymmetry provide a candidate for dark matter?

- ·B and/or L need not be conserved: neutralino decay
- Depending on size and sign
 of deviation: could lose appeal
 as a dark matter candidate

SOLID Sensitivity

Does Supersymmetry provide a candidate for dark matter?

- ·B and/or L need not be conserved: neutralino decay
- Depending on size and sign
 of deviation: could lose appeal
 as a dark matter candidate

Leptophobic Z'

•Virtually all GUT models predict new Z's

arXiv:1203.1102v1

•LHC reach ~ 5 TeV, but....

Buckley and Ramsey-Musolf

- •Little sensitivity if Z' doesnt couple to leptons
- •Leptophobic Z' as light as 120 GeV could have escaped detection

Since electron vertex must be vector, the Z' cannot couple to the C_{1q} 's if there is no electron coupling: can only affect C_{2q} 's

SOLID can improve sensitivity 100-200 GeV range

7

Parity Violation and Hadron Structure

EW & Hadron Physics Interplay

♦ MOLLER Inelastic backgrounds

- ★ Inelastic e-p scattering in diffractive region ($Q^2 << 1 \text{ GeV}^2$), $W^2 > 2 \text{ GeV}^2$) pollutes the Møller peak
- **♦** Box diagram uncertainties
 - * Proton weak charge modified; inelastic intermediate states
- **♦** Parton dynamics in nucleons and nuclei
 - * Higher twist effects
 - * charge symmetry violation in the nucleon
 - * "EMC" style effects: quark pdfs modified in nuclei

Charge Symmetry Violation

Parton-level charge symmetry assumed in deriving ²H A_{PV}

Charge Symmetry Violation

$$\delta u(x) = u^p(x) - d^n(x)$$

$$\delta d(x) = d^p(x) - u^n(x)$$

- u,d quark mass difference
- electromagnetic effects

$$R_{CSV} = \frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

- Direct observation of partonlevel CSV would be very exciting!
- Important implications for high energy collider pdfs
- Could explain significant portion of the NuTeV anomaly

Elastic Electron-Proton Scattering P2 at Mainz

E _{Beam}	200 MeV	
Q²/θ _e	0.0048 GeV ² /20°	
Time/current/target	10000h/150µA/60cm	
Aphys	-20.25 ppb	
ΔA_{tot}	0.34 ppb (1.7 %)	
ΔA_{stat}	0.25 ppb	
ΔA_{sys}	0.19 ppb (0.9%)	
Polarization	(85 ± 0.5) %	
Rate	0.44 10 ¹² Hz	
Δsin² θ _{W stat}	2.8 10-4	
Δsin² θ _{W tot}	3.6 10-4 (0.15 %)	

- Funding approval from DFG
- R&D in progress
- Aim to run from 2017-20
 Technically challenging:
 great synergy with JLab program

Recent joint beam test of integrating quartz detectors successful

Weak Charge and Neutron Skin at Mainz

Future: MESA/P2 at Mainz

New ERL complex will also support a highcurrent extracted beam suitable for a PV measurement of proton weak charge

- $A_{PV} = -20 \text{ ppb to } 2.1\% (0.4ppb)$
- $\delta(\sin^2\theta_W) = 0.2\%$

- Funding approved from DFG
- Development starting now
- Planned running 2017-2020

Weak Charge and Neutron Skin

at Mainz

Future: MESA/P2 at Mainz

New ERL complex will also support a highcurrent extracted beam suitable for a PV measurement of proton weak charge

- $A_{PV} = -20 \text{ ppb to } 2.1\% (0.4ppb)$
- $\delta(\sin^2\theta_W) = 0.2\%$

- Funding approved from DFG
- Development starting now
- Planned running 2017-2020

Explore a
PREX-style
measurement
using
same
solenoidal
magnet to be
used for P2

29-

Krishna Kumar, September 13, 2014

Dark Z to Invisible Particles

Davoudiasl, Lee, Marciano

Dark Photons:

Beyond kinetic mixing; introduce mass mixing with the Z⁰

$$\epsilon_Z = \frac{m_{Z_d}}{M_Z} \delta$$

Potentially Observable Effects (for δ≥10⁻³)
 APV & Polarized Electron Scattering at low <Q>
 BR(K→πZ_d)≈ 4x10⁻⁴δ² BR(B→KZ_d)≈0.1δ²

δ² roughly probed to 10⁻⁶

 $K \rightarrow \pi Z_d \rightarrow \pi +$ "missing energy" ε and δ effects could partially cancel!

Suppression by ~1/6 allows Z_d~100MeV

Combined with muon g-2 → observable dark PV Band

Physics Examples: Beyond LHC

Z resonance measurements: little sensitivity to new contact interactions

Lepton Number Violation A > 5 TeV DoublyCharged Scalars Significant reach beyond LEP-200

Leptophobic Z'

SOLID can improve sensitivity: 100-200 GeV range

Including quark and anti-quark polarizations

Help 6-Flavor Separation

A cross-check showing unambiguously non-zero delta-s in an inclusive measurement?

Semi-inclusive measurements lose statistical power at $x \sim 0.1$, and have significant theoretical interpretation issues

PV Deep Inelastic Scattering

off the simplest isoscalar nucleus and at high Bjorken x

$$e^{-} A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

$$Q^2 >> 1 \ GeV^2$$
, $W^2 >> 4 \ GeV^2$

$$\mathbf{X}$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

$$x \equiv x_{Bjorken}$$
$$y \equiv 1 - E'/E$$

$$Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 \frac{R}{R+1}}$$

$$R(x,Q^2) = \sigma^l/\sigma^r \approx 0.2$$

$$A_{\rm iso} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \quad \begin{array}{l} \text{At high x, A}_{\rm iso} \text{ becomes independent of pdfs, x \& W,} \\ \text{with well-defined SM prediction for Q}^2 \text{ and y} \\ = -\left(\frac{3G_FQ^2}{\pi\alpha2\sqrt{2}}\right) \frac{2C_{1u} - C_{1d}\left(1 + R_s\right) + Y\left(2C_{2u} - C_{2d}\right)R_v}{5 + R_s} \end{array}$$

$$R_{s}(x) = \frac{2S(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 0$$

$$R_{v}(x) = \frac{u_{v}(x) + d_{v}(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 1$$

Interplay with QCD

- Parton distributions (u, d, s, c)
- Charge Symmetry Violation (CSV)
- Higher Twist (HT)
- Nuclear Effects (EMC)

A Novel "EMC" Effect

Consider PVDIS on a heavy nucleus

Cloet, Bentz, Thomas, arXiv 0901.3559

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (ρ exchange)
- shifts quark distributions: "apparent" CSV
- Isovector EMC effect: explain additional 2/3 of NuTeV anomaly
- new insight into medium modification of quark distributions

An improved Ca-48 proposal using Ca-48 being developed for JLab

A Special HT Effect

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of Bjorken, PRD 18, 3239 (78), Wolfenstein, NPB146, 477 (78)

$$V_{\mu} = \left(i \gamma_{\mu} u - \overline{d} \gamma_{\mu} d \right) \Leftrightarrow S_{\mu} = \left(i \gamma_{\mu} u + \overline{d} \gamma_{\mu} d \right)$$

$$\langle VV \rangle = l_{\mu\nu} \int \langle D | V^{\mu}(x) V^{\nu}(0) | D \rangle e^{iq \times x} d^{4}x$$

Isospin decomposition before using PDF's

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

$$\delta = \frac{\langle VV \rangle - \langle SS \rangle}{\langle VV \rangle + \langle SS \rangle}$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right] \qquad \delta = \frac{\langle VV \rangle - \langle SS \rangle}{\langle VV \rangle + \langle SS \rangle} \qquad a(x) \propto \frac{F_1^{\gamma Z}}{F_1^{\gamma}} \propto 1 - 0.3\delta$$

Higher-Twist valence quark-quark correlation

Zero in quark-parton model

$$\langle VV \rangle - \langle SS \rangle = \langle (V - S)(V + S) \rangle \propto l_{\mu\nu} \int \langle D | \overline{u}(x) \gamma^{\mu} u(x) \overline{d}(0) \gamma^{\nu} d(0) \rangle e^{iq \times x} d^4 x$$

(c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting!

o_L contributions cancel

Use v data for small b(x) term.